By Topic

Stochastic MV-PURE Estimator— Robust Reduced-Rank Estimator for Stochastic Linear Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Piotrowski, T. ; Dept. of Commun. & Integrated Syst., Tokyo Inst. of Technol., Tokyo ; Cavalcante, R.L.G. ; Yamada, I.

This paper proposes a novel linear estimator named stochastic MV-PURE estimator, developed for the stochastic linear model, and designed to provide improved performance over the linear minimum mean square error (MMSE) Wiener estimator in cases prevailing in practical, real-world settings, where at least some of the second-order statistics of the random vectors under consideration are only imperfectly known. The proposed estimator shares its main mathematical idea and terminology with the recently introduced minimum-variance pseudo-unbiased reduced-rank estimator (MV-PURE), developed for the linear regression model. The proposed stochastic MV-PURE estimator minimizes the mean square error (MSE) of its estimates subject to rank constraint and inducing minimum distortion to the target random vector. Therefore, the stochastic MV-PURE combines the techniques of the reduced rank Wiener filter (named in this paper RR-MMSE) and the distortionless-constrained estimator (named in this paper C-MMSE), in order to achieve greater robustness against noise or model errors than RR-MMSE and C-MMSE. Furthermore, to ensure that the stochastic MV-PURE estimator combines the reduced-rank and minimum-distortion approaches in the MSE-optimal way, we propose a rank selection criterion which minimizes the MSE of the estimates obtained by the stochastic MV-PURE. As a numerical example, we employ the stochastic MV-PURE, RR-MMSE, C-MMSE, and MMSE estimators as linear receivers in a MIMO wireless communication system. This example is chosen as a typical signal processing scenario, where the statistical information on the data, on which the estimates are built, is only imperfectly known. We verify that the stochastic MV-PURE achieves the lowest MSE and symbol error rate (SER) in such settings by employing the proposed rank selection criterion.

Published in:

Signal Processing, IEEE Transactions on  (Volume:57 ,  Issue: 4 )