By Topic

On recovering hyperquadrics from range data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kumar, S. ; Dept. of Comput. Sci. & Eng., Univ. of South Florida, Tampa, FL, USA ; Song Han ; Goldgof, D. ; Bowyer, K.

This paper discusses the applications of hyperquadric models in computer vision and focuses on their recovery from range data. Hyperquadrics are volumetric shape models that include superquadrics as a special case. A hyperquadric model can be composed of any number of terms and its geometric bound is an arbitrary convex polytope. Thus, hyperquadrics can model more complex shapes than superquadrics. Hyperquadrics also possess many other advantageous properties (compactness, semilocal control, and intuitive meaning). Our proposed algorithm starts with a rough fit using only six terms in 3D (four in 2D) and adds additional terms as necessary to improve fitting. Suitable constraints are used to ensure proper convergence. Experimental results with real 2D and 3D data are presented

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:17 ,  Issue: 11 )