Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Vector-based arc segmentation in the machine drawing understanding system environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Dori, D. ; Fac. of Ind. Eng. & Manage., Technion-Israel Inst. of Technol., Haifa, Israel

Arcs are important primitives in engineering drawings. Extracting these primitives during the lexical analysis phase is a prerequisite to syntactic and semantic understanding of engineering drawings within the machine drawing understanding system. Bars are detected by the orthogonal zig-zag vectorization algorithm. Some of the detected bars are linear approximations of arcs. As such, they provide the basis for arc segmentation. An arc is detected by finding a chain of bars and a triplet of points along the chain. The arc center is first approximated as the center of mass of the triangle formed by the intersection of the perpendicular bisectors of the chords these points define. The location of the center is refined by recursively finding more such triplets and converging to within no more than a few pixels from the actual arc center after two or three iterations. The high performance of the algorithm, demonstrated on a set of real engineering drawings, is due to the fact that it avoids both raster-to-vector and massive pixel-level operations, as well as any space transformations

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:17 ,  Issue: 11 )