By Topic

A new edge element analysis of dispersive waveguiding structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jilin Tan ; Dept. of Electr. Eng., Arizona State Univ., Tempe, AZ, USA ; Guangwen Pan

A new functional is rigorously selected for the edge element method to solve the 2-D1/2 guided wave problems. The variational formulation is derived from the vector wave equation without any assumption or simplifications, and therefore the formulation is the full-wave analysis. Moderate to heavy ohmic loss and dielectric loss are taken into account in a natural and consistent manner. As a result, finite cross-section of arbitrary shape and finite conductivity can be handled without imposing the impedance boundary condition (IBC). The DEC may no longer be held for high-speed microelectronics applications, where the cross-section dimension may have been in the same order of the skin depths of some frequency components. The propagation modes are obtained by solving the large scale generalized eigenvalue and eigenvector equations employing the subspace iteration method. The spurious modes are totally suppressed in the whole frequency range of interest. Numerical examples of dielectric waveguides and microstrip transmission lines with finite conductivity are conducted

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:43 ,  Issue: 11 )