By Topic

Sensor Scheduling for Target Tracking in a Wireless Sensor Network Using Modified Particle Swarm Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Mingyue Feng ; Coll. of Inf. Syst. & Manage., Nat. Univ. of Defense Technol., Changsha, China ; Xianqing Yi ; Guohui Li ; Zhanshuai Du
more authors

Sensor scheduling for target tracking in a sensor network is a research hotspot for its effectiveness in improving performance of the network. If numbers of targets and sensors are very large, the scale of the problem may be too large to solve using traditional methods. A method based on modified particle swarm optimization algorithm (MPSO) is proposed to solve the problem. Firstly, extended Kalman filter (EKF) is adopted for target tracking, and based on the tracking model, a mathematical model is founded to formulate the problem. Then MPSO is designed based on operator redefinition that modifies standard PSO to suit with this problem. Finally, feasibility and efficiency of the method presented are verified through numerical experiments by comparing it with a genetic algorithm (GA) based method and a rule-based method.

Published in:

Computer Science and Computational Technology, 2008. ISCSCT '08. International Symposium on  (Volume:2 )

Date of Conference:

20-22 Dec. 2008