By Topic

Differential Earth Mover's Distance with Its Applications to Visual Tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Qi Zhao ; Sch. of Eng., Univ. of California, Santa Cruz, Santa Cruz, CA, USA ; Yang, Zhi ; Hai Tao

The Earth mover's distance (EMD) is a similarity measure that captures perceptual difference between two distributions. Its computational complexity, however, prevents a direct use in many applications. This paper proposes a novel differential EMD (DEMD) algorithm based on the sensitivity analysis of the simplex method and offers a speedup at orders of magnitude compared with its brute-force counterparts. The DEMD algorithm is discussed and empirically verified in the visual tracking context. The deformations of the distributions for objects at different time instances are accommodated well by the EMD, and the differential algorithm makes the use of EMD in real-time tracking possible. To further reduce the computation, signatures, i.e., variable-size descriptions of distributions, are employed as an object representation. The new algorithm models and estimates local background scenes as well as foreground objects to handle scale changes in a principled way. Extensive quantitative evaluation of the proposed algorithm has been carried out using benchmark sequences and the improvement over the standard mean shift tracker is demonstrated.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:32 ,  Issue: 2 )