Cart (Loading....) | Create Account
Close category search window
 

Maximum-Rate Node Selection for Power-Limited Multiantenna Relay Backbones

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Baccarelli, Enzo ; INFO-COM Dept., Univ. of Rome La Sapienza, Rome ; Biagi, Mauro ; Pelizzoni, Cristian ; Cordeschi, Nicola

Wireless mesh networks (WMNs) are envisioned for extending the coverage of WLANs by interconnecting the underlying access points (APs) via high-capacity wireless backbones. Since the ultimate goal of a WMN is to provide Internet connectivity to residential clients, WMN traffic is mainly routed over the backbone either toward the Internet gateways (IGWs) or from the IGWs to the APs. In principle, the transport capacity of a WMN can further be upgraded by equipping the underlying backbone routers with multiantenna (MA) radio modules. Motivated by the above consideration, in this paper, we focus on the optimized node selection (e.g., path-routing) over MA mesh backbones when the target is to maximize the end-to-end routed information rate subject to a constraint on the total power available for the relays. Under the assumption of Rayleigh-distributed block fading, we assume that point-to-point capacity-achieving space-time codes (STCs) are used for the single-hop link. At first, we tackle the routing problem when neither interference mitigation (IM) nor transmit beamforming (TB) is performed at the relay nodes, and then, we extend the analysis to the cases when IM and/or TB are also carried out. The effects of channel-state-information (CSI) possibly available at the relay nodes are also investigated. So doing, we are able to gain insight about the combined effect of spatial multiplexing and IM capabilities of the overall MA architecture on both end-to-end capacity and access medium performance of the considered WMN.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:8 ,  Issue: 6 )

Date of Publication:

June 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.