By Topic

Efficient Skyline Computation in Structured Peer-to-Peer Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Bin Cui ; Dept. of Comput. Sci., Peking Univ., Beijing ; Lijiang Chen ; Linhao Xu ; Hua Lu
more authors

An increasing number of large-scale applications exploit peer-to-peer network architecture to provide highly scalable and flexible services. Among these applications, data management in peer-to-peer systems is one of the interesting domains. In this paper, we investigate the multidimensional skyline computation problem on a structured peer-to-peer network. In order to achieve low communication cost and quick response time, we utilize the iMinMax(theta ) method to transform high-dimensional data to one-dimensional value and distribute the data in a structured peer-to-peer network called BATON. Thereafter, we propose a progressive algorithm with adaptive filter technique for efficient skyline computation in this environment. We further discuss some optimization techniques for the algorithm, and summarize the key principles of our algorithm into a query routing protocol with detailed analysis. Finally, we conduct an extensive experimental evaluation to demonstrate the efficiency of our approach.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:21 ,  Issue: 7 )