By Topic

Performance Trade-Offs in Using NVRAM Write Buffer for Flash Memory-Based Storage Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sooyong Kang ; Div. of Inf. & Commun., Hanyang Univ., Seoul ; Sungmin Park ; Hoyoung Jung ; Hyoki Shim
more authors

While NAND flash memory is used in a variety of end-user devices, it has a few disadvantages, such as asymmetric speed of read and write operations, inability to in-place updates, among others. To overcome these problems, various flash-aware strategies have been suggested in terms of buffer cache, file system, FTL, and others. Also, the recent development of next-generation nonvolatile memory types such as MRAM, FeRAM, and PRAM provide higher commercial value to non-volatile RAM (NVRAM). At today's prices, however, they are not yet cost-effective. In this paper, we suggest the utilization of small-sized, next-generation NVRAM as a write buffer to improve the .overall performance of NAND flash memory-based storage systems. We propose various block-based NVRAM write buffer management policies and evaluate the performance improvement of NAND flash memory-based storage systems under each policy. Also, we propose a novel write buffer-aware flash translation layer algorithm, optimistic FTL, which is designed to harmonize well with NVRAM write buffers. Simulation results show that the proposed buffer management policies outperform the traditional page-based LRU algorithm and the proposed optimistic FTL outperforms previous log block-based FTL algorithms, such as BAST and FAST.

Published in:

Computers, IEEE Transactions on  (Volume:58 ,  Issue: 6 )