By Topic

Semi-Markov Models for Brownian Dynamics Permeation in Biological Ion Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Krishnamurthy, V. ; Dept. of Electr. & Comput. Eng., Univ. of British Columbia, Vancouver, BC, Canada ; Kai-Yiu Luk

Constructing accurate computational models that explain how ions permeate through a biological ion channel is an important problem in biophysics and drug design. Brownian dynamics simulations are large-scale interacting particle computer simulations for modeling ion channel permeation but can be computationally prohibitive. In this paper, we show the somewhat surprising result that a small-dimensional semi-Markov model can generate events (such as conduction events and dwell times at binding sites in the protein) that are statistically indistinguishable from Brownian dynamics computer simulation. This approach enables the use of extrapolation techniques to predict channel conduction when performing the actual Brownian dynamics simulation that is computationally intractable. Numerical studies on the simulation of gramicidin A ion channels are presented.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:8 ,  Issue: 1 )