By Topic

Rule extraction from artificial neural network with optimized activation functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wang Jian-guo ; Mech. Eng. Sch., Univ. of Sci. & Technol. Beijing, Beijing, China ; Yang Jian-hong ; Zhang Wen-xing ; Xu Jin-wu

A novel method of rule extraction from artificial neural network with optimized activation function is proposed. Weight-decay approach is used in training and the unnecessary connections in the neural network are pruned at the cost of an increase in the error function within a predetermined limit. A penalty term is added in the activation function to facilitate the values of hidden and output nodes to have better approximation to 0 or 1, which is of great help in symbolic rule extraction in neural network. With the optimized activation function, the rule extraction becomes much easier and simpler. Rule extraction has been experimented on two public datasets of iris and breast-cancer, which results showed that the proposed method has a better rule overcast accuracy than the commonly used methods, such as decision tree algorithm C4.5 and RX algorithm.

Published in:

Intelligent System and Knowledge Engineering, 2008. ISKE 2008. 3rd International Conference on  (Volume:1 )

Date of Conference:

17-19 Nov. 2008