By Topic

Globus pallidus neuron spike time series prediction based on local-region multi-step forecasting model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Yan He ; Key Lab. of Biomed. Inf. Eng., Xian Jiaotong Univ., Xian, China ; Jue Wang ; Qingfeng Wang ; Guangjun Zhang
more authors

Add-weighted one-rank local-region multi-steps forecasting model (AOLMM) is adopted to predict the neuron spikes of MPTP monkey model of Parkinson¿s disease (PD).The AOLMM based on Takens embedding theory has been proved as effectively predict many chaotic systems and overcome some shortcomings like Large computational quantity and cumulative error of other chaotic prediction methods. Many previous studies have demonstrated the existence of certain neurons in the thalamus of PD patients especially in the Globus Pallidus(GP) is closely related with the pathogenesis of tremor. We observed that with appropriate embedding dimension and the proper maximum forecasting step, the AOLMM can well foretell the dynamical trend of the GP neuron spikes of the MPTP induced monkey model of PD. It indicates that AOLMM is powerful to help us understand the pathological mechanism of PD better and clear.

Published in:

Intelligent System and Knowledge Engineering, 2008. ISKE 2008. 3rd International Conference on  (Volume:1 )

Date of Conference:

17-19 Nov. 2008