By Topic

An Investigation of Phonological Feature Systems Used in Detection-Based ASR

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
I-Fan Chen ; Inst. of Inf. Sci., Acad. Sinica, Taipei, Taiwan ; Hsin-Min Wang

In this paper, we study the effect of using different phonological feature sets for detection-based automatic speech recognition in phone recognition tasks. Three phonological feature sets derived from different underlying phonological theories are investigated. Our experiments were conducted on the TIMIT database. By comparing the oracle phone recognition results achieved by assuming that all the phonological features are correctly detected based on each feature set, we show that selecting an appropriate phonological feature set is crucial to the performance of detection-based ASR. The highly accurate oracle phone recognition results show that the performance of the CRF-based backend, which is commonly used in detection-based ASR, is very satisfactory. Comparison of the oracle phone recognition results and the real phone recognition results indicates that investigation of high-accuracy front-end detectors is a key issue in improving the performance of detection-based ASR.

Published in:

Chinese Spoken Language Processing, 2008. ISCSLP '08. 6th International Symposium on

Date of Conference:

16-19 Dec. 2008