Cart (Loading....) | Create Account
Close category search window
 

A Two-Stage Capacity-Achieving Demodulation/Decoding Method for Random Matrix Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Truhachev, D. ; Dept. of Electr. & Comput. Eng., Univ. of Alberta, Edmonton, AB ; Schlegel, C. ; Krzymien, L.

Iterative processing for linear matrix channels, aka turbo equalization, turbo demodulation, or turbo code-division multiple access (CDMA), has traditionally been addressed as the concatenation of conventional error control codes with the linear (matrix) channel. However, in several situations, such as CDMA, multiple-input-multiple-output (MIMO) channels, orthogonal frequency-division multiplexing (OFDM), and intersymbol-interference (ISI) channels, the channel itself either contains inherent signal redundancy or such redundancy can readily be introduced at the transmitter. For such systems, iterative demodulation of the linear channel exploiting this redundancy using simple iterative cancellation demodulators, followed by conventional feedforward error control decoding, provides a low-complexity, but extremely efficient decoding alternative. This two-stage demodulator/decoder outperforms more complex turbo CDMA methods for equal power modes (users). Furthermore, it is shown that arbitrary numbers of modes can be supported if an unequal power distribution is adopted. These power distributions are nested, which means that additional modes can be added without disturbing an existing mode population. The main result shows that these nested power distributions enable the two-stage receiver to approach the Shannon capacity of the channel to within less than one bit for any signal-to-noise ratio (SNR).

Published in:

Information Theory, IEEE Transactions on  (Volume:55 ,  Issue: 1 )

Date of Publication:

Jan. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.