By Topic

The Minimum Distance of Turbo-Like Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bazzi, L. ; Dept. of Electr. & Comput. Eng., American Univ. of Beirut, Beirut ; Mahdian, M. ; Spielman, D.A.

Worst-case upper bounds are derived on the minimum distance of parallel concatenated turbo codes, serially concatenated convolutional codes, repeat-accumulate codes, repeat-convolute codes, and generalizations of these codes obtained by allowing nonlinear and large-memory constituent codes. It is shown that parallel-concatenated turbo codes and repeat-convolute codes with sub-linear memory are asymptotically bad. It is also shown that depth-two serially concatenated codes with constant-memory outer codes and sublinear-memory inner codes are asymptotically bad. Most of these upper bounds hold even when the convolutional encoders are replaced by general finite-state automata encoders. In contrast, it is proven that depth-three serially concatenated codes obtained by concatenating a repetition code with two accumulator codes through random permutations can be asymptotically good.

Published in:

Information Theory, IEEE Transactions on  (Volume:55 ,  Issue: 1 )