By Topic

Robust Hypothesis Testing With a Relative Entropy Tolerance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Bernard C. Levy ; Dept. of Electr. & Comput. Eng, Univ. of California, Davis, CA

This paper considers the design of a minimax test for two hypotheses where the actual probability densities of the observations are located in neighborhoods obtained by placing a bound on the relative entropy between actual and nominal densities. The minimax problem admits a saddle point which is characterized. The robust test applies a nonlinear transformation which flattens the nominal likelihood ratio in the vicinity of one. Results are illustrated by considering the transmission of binary data in the presence of additive noise.

Published in:

IEEE Transactions on Information Theory  (Volume:55 ,  Issue: 1 )