By Topic

Efficient Minimization Method for a Generalized Total Variation Functional

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rodriguez, P. ; Digital Signal Process. Group, Pontificia Univ. Catolica del Peru, Lima ; Wohlberg, B.

Replacing the lscr2 data fidelity term of the standard total variation (TV) functional with an lscr1 data fidelity term has been found to offer a number of theoretical and practical benefits. Efficient algorithms for minimizing this lscr1-TV functional have only recently begun to be developed, the fastest of which exploit graph representations, and are restricted to the denoising problem. We describe an alternative approach that minimizes a generalized TV functional, including both lscr2-TV and lscr1-TV as special cases, and is capable of solving more general inverse problems than denoising (e.g., deconvolution). This algorithm is competitive with the graph-based methods in the denoising case, and is the fastest algorithm of which we are aware for general inverse problems involving a nontrivial forward linear operator.

Published in:

Image Processing, IEEE Transactions on  (Volume:18 ,  Issue: 2 )