By Topic

A Multicue Bayesian State Estimator for Gaze Prediction in Open Signed Video

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Davies, S.J.C. ; Dept. of Electr. & Electron. Eng., Univ. of Bristol, Bristol ; Agrafiotis, D. ; Canagarajah, C.N. ; Bull, D.R.

We propose a multicue gaze prediction framework for open signed video content, the benefits of which include coding gains without loss of perceived quality. We investigate which cues are relevant for gaze prediction and find that shot changes, facial orientation of the signer and face locations are the most useful. We then design a face orientation tracker based upon grid-based likelihood ratio trackers, using profile and frontal face detections. These cues are combined using a grid-based Bayesian state estimation algorithm to form a probability surface for each frame. We find that this gaze predictor outperforms a static gaze prediction and one based on face locations within the frame.

Published in:

Multimedia, IEEE Transactions on  (Volume:11 ,  Issue: 1 )