By Topic

Full-Periphery Surface Impedance for Skin-Effect Approximation in Electric Field Integral Equation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Al-Qedra, M. ; Dept. of Electr. & Comput. Eng., Univ. of Manitoba, Winnipeg, MB ; Okhmatovski, V.I.

A new surface impedance model for RL-extraction in lossy two-dimensional (2-D) interconnects of rectangular cross section is presented. The model is derived directly from the volumetric electric field integral equation under the approximation of the unknown volumetric current density as a product of the exponential factor describing the skin-effect and the unknown surface current density on the conductor's periphery. By proper accounting for the coupling between the boundary elements situated on the top and bottom surfaces of conductor with the elements located on the side-walls, the model maintains accuracy from dc to multi-GHz frequencies as well as for conductors with both large and small thickness/width ratios.

Published in:

Microwave and Wireless Components Letters, IEEE  (Volume:19 ,  Issue: 1 )