By Topic

Observer-Based Relaxed {{cal H}}_{\infty } Control for Fuzzy Systems Using a Multiple Lyapunov Function

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sung Hyun Kim ; Div. of Electr. & Comput. Eng., Pohang Univ. of Sci. & Technol., Pohang ; PooGyeon Park

This short paper proposes a method of designing a fuzzy observer-based H infin controller for discrete-time Takagi-Sugeno (T-S) fuzzy systems. To enhance the applicability of the output-feedback controller and improve its performance, this short paper first builds a set of fuzzy control rules with premise variables different from those of the T-S fuzzy system, and sets the overall controller to be dependent on not only the current time but also the one-step-past information on the estimated fuzzy weighting functions. Then, based on the fuzzy control rules, this short paper establishes a less conservative H infin stabilization condition incorporated with a multiple Lyapunov function dependent on the estimated fuzzy weighting functions. Through a two-step design procedure, the H infin stabilization condition is formulated in terms of parameterized linear matrix equalities (PLMIs), which are reconverted into LMIs with the help of an efficient and effective relaxation scheme.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:17 ,  Issue: 2 )