By Topic

Comparing Two Time-Scale and Time-Frequency based Methods in Newborns' EEG Seizure Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zarjam, P. ; Fac. of Eng., Azad Univ., Kermanshah ; Mesbah, M. ; Boashash, B.

In this research, two different approaches for detecting seizure patterns in newborns' Electroencephalogram (EEG) signals are compared. The first proposed approach is a time-frequency (TF) based method, in which, the discrimination between seizure and non-seizure states is based on the TF distance between the consequent segments in the EEG signal. Three different TF measures and three different reduced time-frequency distributions (TFD) are used in this study. The second proposed approach is a discrete wavelet transform (DWT) based method, in which, the detection scheme is based on observing the changing behavior of few statistical quantities of the wavelet coefficients (WCs) of the EEGs at various scales. These statistics form a feature set which is fed into an artificial neural network (ANN) classifier to organize the EEG signals into seizure and non-seizure activities. The proposed methods are tested on the EEG data acquired from three neonates with ages under two weeks. The empirical results validate the suitability of the two proposed methods in automated newborns' seizure detection. The results present an average seizure detection rate (SDR) of 96% and false alarm rate (FAR) of 5% using Kullback-Leibler measure which outperforms the other two distance measures and the DWT based method.

Published in:

Signal Processing and Communications, 2007. ICSPC 2007. IEEE International Conference on

Date of Conference:

24-27 Nov. 2007