By Topic

Computer Aided Detection of Prostate Cancer using Fused Information from Dynamic Contrast Enhanced and Morphological Magnetic Resonance Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
D. Ampeliotis ; Comput. Eng. & Inf. Dept., Univ. of Patras, Rio-Patras, Greece ; A. Antonakoudi ; K. Berberidis ; E. Z. Psarakis

This paper presents a computer-aided diagnosis scheme for the detection of prostate cancer. The pattern recognition scheme proposed, utilizes fused dynamic and morphological features extracted from magnetic resonance images (MRIs). The performance of the proposed scheme has been evaluated through extensive training and testing on several patient cases, where the staging of their condition has been previously evaluated by both ultrasoundguided biopsy and radiological assessment. The classification scheme is based on Probabilistic Neural Networks (PNNs), whose parameters are estimated using the Expectation-Maximization (EM) algorithm during a training phase. Fusion of the image characteristics is performed by properly aligning the respective T1-weighted dynamic and T2-weighted morphological images, allowing accurate feature selection from both images. The proposed classification scheme as well as the effect of fusion on the extracted features is tested, with respect to the correct classification rate (CCR) of each case.

Published in:

Signal Processing and Communications, 2007. ICSPC 2007. IEEE International Conference on

Date of Conference:

24-27 Nov. 2007