Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at onlinesupport@ieee.org. We apologize for any inconvenience.
By Topic

Context and Keyword Extraction in Plain Text Using a Graph Representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chahine, C.A. ; INSA Rouen, Mont-Saint-Aignan, France ; Chaignaud, N. ; Kotowicz, J.-P. ; Pecuchet, J.-P.

Document indexation is an essential task achieved by archivists or automatic indexing tools. To retrieve relevant documents to a query, keywords describing this document have to be carefully chosen. Archivists have to find out the right topic of a document before starting to extract the keywords. For an archivist indexing specialized documents, experience plays an important role. But indexing documents on different topics is much harder. This article proposes an innovative method for an indexing support system. This system takes as input an ontology and a plain text document and provides as output contextualized keywords of the document. The method has been evaluated by exploiting Wikipedia's category links as a termino-ontological resources.

Published in:

Signal Image Technology and Internet Based Systems, 2008. SITIS '08. IEEE International Conference on

Date of Conference:

Nov. 30 2008-Dec. 3 2008