By Topic

An Efficient Approach for Feature Selection of SEMG Signal

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liang Qi ; Inst. of Intell. Control & Robert Res., Hanzghou Dianzi Univ., Hangzhou ; Ye Ming ; MaWenjie

This paper introduces an approach to obtain the feature vectors of surface electromyography (sEMG) signal based on Hilbert Huang transform (HHT). An adaptive segmentation method that could effectively select appropriate intrinsic mode function (IMF) is proposed. With the features gathered by using the energy of one channel signal, we also provide an optimized strategy based on experiments and experiences to increase the recognition rate of hand-motion patterns. The results from SVM neural networks classifier are presented to support this approach.

Published in:

Computational Intelligence and Design, 2008. ISCID '08. International Symposium on  (Volume:2 )

Date of Conference:

17-18 Oct. 2008