By Topic

A Programming Framework for Incremental Data Distribution in Iterative Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chan, P. ; Caulfield Sch. of Inf. Technol., Monash Univ., Caulfield East, VIC, Australia ; Abramson, D.

Successful HPC over desktop grids and non-dedicated NOWs is challenging, since good performance is difficult to achieve due to dynamic workloads. On iterative data-parallel applications, this is addressed by dynamic data distribution. However, current approaches migrate an application from one distribution to another in one single phase, which can impact performance. In this paper, we present D3-ARC, a programming framework to support adaptive and incremental data distribution, so that data migration takes place over several successive iterations. D3-ARC consists of a runtime system and an API for specifying the distribution of arrays as well as how data redistribution takes place. We demonstrate how D3-ARC can be used to develop an incremental strategy for data distribution in a Poisson solver, utilising a runtime feedback mechanism to determine how much data to migrate during each iteration.

Published in:

Parallel and Distributed Processing with Applications, 2008. ISPA '08. International Symposium on

Date of Conference:

10-12 Dec. 2008