By Topic

Gene Network Learning Using Regulated Dynamic Bayesian Network Methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaotong Lin ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Kansas, Lawrence, KS ; Xue-wen Chen

Dynamic Bayesian network (DBN) methods have shown great promise in regulatory network reconstruction because of their capability of modeling causality and cyclic networks, and handling data with noises found in biological experiments. However, they tend to produce relative high false positives and are not computationally efficient even for networks of moderate size. This paper presents a novel DBN-based approach to address these issues. For each node, a differential mutual information is used to select potential parents and a Bayesian scoring metric with a Dirichlet prior for regulation is applied to evaluate its parents. The proposed method is applied to recover a network structure from simulated data with higher accuracy and computational efficiency compared to DBNs with other scoring metrics. When applied to infer a cell cycle pathway of Saccharomyces cerevisiae using real time-series expression data, the proposed method is capable of identifying most gene interactions in the pathways.

Published in:

Machine Learning and Applications, 2008. ICMLA '08. Seventh International Conference on

Date of Conference:

11-13 Dec. 2008