By Topic

Mapping Uncharted Waters: Exploratory Analysis, Visualization, and Clustering of Oceanographic Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lewis, J.M. ; Dept. of Cognitive Sci., Univ. of California, San Diego, CA ; Hull, P.M. ; Weinberger, K.Q. ; Saul, L.K.

In this paper we describe an interdisciplinary collaboration between researchers in machine learning and oceanography. The collaboration was formed to study the problem of open ocean biome classification. Biomes are regions on Earth with similar climate (e.g., temperature and rainfall) and vegetation structure (e.g., grasslands, coniferous forests, and deserts). To discover biomes in the open ocean, we apply leading methods in high dimensional data analysis, clustering, and visualization to oceanographic measurements culled from multiple existing databases. We compare traditional approaches, such as k-means clustering and principal component analysis, to newer approaches such as Isomap and maximum variance unfolding. Our work provides the first quantitative classification of open ocean biomes from an automated statistical analysis of multivariate data. It also provides a valuable case study in the use (and misuse) of recently developed algorithms for high dimensional data analysis.

Published in:

Machine Learning and Applications, 2008. ICMLA '08. Seventh International Conference on

Date of Conference:

11-13 Dec. 2008