By Topic

Optimize Algorithm of Decision Tree Based on Rough Sets Hierarchical Attributes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhang Yuan ; Sch. of Electr. Eng., Guangxi Univ., Nanning, China ; Yue-jin Lv

Rough set theory is a new mathematical tool to deal with vagueness and uncertainty. And now it has been widely applied in constructing decision tree which has no hierarchical attributes inside. However, hierarchical attributes exist generally in realistic environment, which leads that decision making has max rules. Using max rules to build decision trees can optimize decision trees and has practical values as well. So, in order to deal with hierarchical attributes in decision tree, this paper try to design an optimize algorithm of decision tree based on rough sets hierarchical attributes (ARSHA), which works by combining the hierarchical attribute values and deleting the associated objects when max rules exist in decision table. So that the algorithm developed in this paper can abstract the simplest rule set that can cover all information for decision making. Finally, a real example is used to demonstrate its feasibility and efficiency.

Published in:

Computational Intelligence and Security, 2008. CIS '08. International Conference on  (Volume:2 )

Date of Conference:

13-17 Dec. 2008