By Topic

Supporting Distributed Application Workflows in Heterogeneous Computing Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Qishi Wu ; Dept. of Comput. Sci., Univ. of Memphis Memphis, Memphis, TN, USA ; Yi Gu

Next-generation computation-intensive applications in various fields of science and engineering feature large-scale computing workflows with complex structures that are often modeled as directed acyclic graphs. Supporting such task graphs and optimizing their end-to-end network performances in heterogeneous computing environments are critical to the success of these distributed applications that require fast response. We construct analytical models for computing modules, network nodes, and communication links to estimate data processing and transport overhead, and formulate the task graph mapping with node reuse and resource sharing for minimum end-to-end delay as an NP-complete optimization problem. We propose a heuristic approach to this problem that recursively computes and maps the critical path to the network using a dynamic programming-based procedure. The performance superiority of the proposed approach is justified by an extensive set of experiments on simulated data sets in comparison with existing methods.

Published in:

Parallel and Distributed Systems, 2008. ICPADS '08. 14th IEEE International Conference on

Date of Conference:

8-10 Dec. 2008