By Topic

New Approach for the Prediction of CCD Dark Current Distribution in a Space Radiation Environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Gilard, O. ; French Space Agency CNES, Toulouse ; Boutillier, M. ; Quadri, Gianandrea ; Rolland, G.
more authors

Commercial Off-The-Shelf Charge Coupled Devices were irradiated with protons at energies ranging from 17 MeV to 200 MeV. Evolution of the dark current distribution during irradiation is discussed. A general method is presented to predict the increase of both mean dark current and associated non-uniformity after a monoenergetic proton irradiation. The results are found to be in good agreement with the experimental outputs. The model is then used to assess the dark signal degradation of a device exposed to a multienergetic proton beam. Again, the predictions are shown to be consistent with the experimental data. This makes possible the assessment of the dark signal distribution of a device exposed to a real space environment.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:55 ,  Issue: 6 )