By Topic

Quantum Detection Efficiency in Geiger Mode Avalanche Photodiodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)

The fabrication of silicon shallow junction photodiodes is a relevant topic for the detection of blue and near ultraviolet weak photon fluxes. In this paper we present a simple model to calculate the quantum detection efficiency (QDE) of a Geiger mode avalanche photodiode (GMAP) as a function of the dead layer thickness above the junction depletion layer. A comparison between calculated and experimental data is also presented. Moreover, by using the same model, an analysis of the QDE at 420 nm wavelength of conventional GMAPs based on shallow N+-P and P+-N junctions is given.

Published in:

IEEE Transactions on Nuclear Science  (Volume:55 ,  Issue: 6 )