Cart (Loading....) | Create Account
Close category search window
 

Ecological Interface Design in the Nuclear Domain: An Application to the Secondary Subsystems of a Boiling Water Reactor Plant Simulator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Lau, N. ; Dept. of Mech. & Ind. Eng., Univ. of Toronto, Toronto, ON ; Veland, O. ; Kwok, J. ; Jamieson, G.A.
more authors

Accident investigations have revealed that unanticipated events are often precursors of major accidents. Unfortunately, conventional approaches to interface design for complex systems do not explicitly support problem solving during unanticipated events. Ecological Interface Design (EID) is a theoretical framework for designing computer interfaces that explicitly aims to support worker adaptation, especially during unanticipated events, leading to more robust user interfaces. However, limited verification and validation research in representative settings is impeding the adoption of the EID framework in the nuclear domain. This article presents an example by applying EID to the secondary side of a boiling water reactor plant simulator. The interface designers constructed abstraction hierarchy, causal, and part-whole models to acquire pertinent knowledge of the work domain and designed five ecological displays to represent the plant processes. These displays are analytically shown to contain visualization properties that could support monitoring and diagnosing unanticipated events in accordance to the claims of the EID framework. The analytical evaluation of the visualization features of the displays also illustrates that the EID framework could be applied to improve current verification practice. A companion article reports an empirical evaluation of these ecological displays to validate whether these properties could enhance operator performance.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:55 ,  Issue: 6 )

Date of Publication:

Dec. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.