By Topic

Investigation of the Propagation Induced Pulse Broadening (PIPB) Effect on Single Event Transients in SOI and Bulk Inverter Chains

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

14 Author(s)
V. Ferlet-Cavrois ; DAM, Commissariat a l'Energie Atomique, Arpajon ; V. Pouget ; D. McMorrow ; J. R. Schwank
more authors

The propagation of single event transients (SET) is measured and modeled in SOI and bulk inverter chains. The propagation-induced pulse broadening (PIPB) effect is shown to determine the SET pulse width measured at the output of long chains of inverters after irradiation. Initially, narrow transients, less than 200 ps at the struck inverter, are progressively broadened into the nanosecond range. PIPB is induced by dynamic floating body effects (also called history effects) in SOI and bulk transistors, which depend on the bias state of the transistors before irradiation. Implications for SET hardness assurance, circuit modelling and hardening are discussed. Floating body and PIPB effects are usually not taken into account in circuit models, which can lead to large underestimation of SET sensitivity when using simulation techniques like fault injection in complex circuits.

Published in:

IEEE Transactions on Nuclear Science  (Volume:55 ,  Issue: 6 )