By Topic

MIMO-OFCDM systems with joint iterative detection and optimal power allocation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yiqing Zhou ; with the Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong (e-mail: {yqzhou, tsng} ; Tung-Sang Ng

This paper investigates the orthogonal frequency and code division multiplexing (OFCDM) systems with multiple input multiple output multiplexing (MIMO-OFCDM) and multicode transmission. Combining the iterative detection in the space domain and the hybrid multi-code interference (MDI) cancellation and minimum mean square error (MMSE) detection in the frequency domain, a joint iterative detection is proposed, which enables space and frequency diversity gains to be jointly exploited. Moreover, using a two-dimensional (2-D) averaging channel estimation algorithm, a close form expression is derived for the optimal power allocation between the pilot and all data channels that achieves the best system performance. It is shown that the optimal power ratio mainly depends on the channel estimation algorithm, the number of transmit antennas as well as the number of pilot and data symbols in a packet, but is not sensitive to the changes in signal-to-noise ratio (SNR) and diversity gains. Simulations are conducted to verify the derived optimal power ratio and study the performance of the proposed joint detection algorithm. It is shown that considerable improvement can be obtained when the number of loops in the joint iterative detection increases. Moreover, the system performance is enhanced significantly when the frequency domain spreading factor, NF, increases.

Published in:

IEEE Transactions on Wireless Communications  (Volume:7 ,  Issue: 12 )