By Topic

Sharing Aggregate Computation of Multiple Group by Queries over Distributed Data Stream

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shuang Wang ; Coll. of Inf. Sci. & Eng., Northeastern Univ., Shenyang ; Guoren Wang ; Xiaoxing Gao

Data streaming systems are becoming essential for monitoring applications such as financial analysis, network intrusion detection and sensor network. These systems often have to process multiple similar but different continuous aggregation queries simultaneously. Since executing each query separately can lead to significant scalability and performance problems, it is vital to share resources by exploiting similarities in the queries. The challenge is to identify overlapping computations that may not be obvious in the queries themselves. In this paper, we reveal new opportunities for sharing work in the context of distributed aggregation queries that vary in their group by predicates. We identify settings in which a large set of m such queries can be answered by executing n< m different queries. The n queries are revealed by analyzing the binary two-dimension array capturing the connection among the queries that they satisfy. We propose a novel algorithmic solution for problem of finding the minimum number of queries in such a distributed-streams setting, in order to optimize the communicate cost across the network. The experiment result show that our approach gives us as much as magnitude performance improvement over the no-share settings.

Published in:

Computer Science and Software Engineering, 2008 International Conference on  (Volume:4 )

Date of Conference:

12-14 Dec. 2008