By Topic

Investigation of Low-Frequency Noise in Silicon Nanowire MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Jing Zhuge ; Inst. of Microelectron., Peking Univ., Beijing ; Runsheng Wang ; Ru Huang ; Yu Tian
more authors

Low-frequency noise (LFN) in n-type silicon nanowire MOSFETs (SNWTs) is investigated in this letter. The drain-current spectral density exhibits significant dispersion of up to five orders of magnitude due to the ultrasmall dimensions of SNWTs. The measured results show that LFN in SNWTs can be well described by the correlated-mobility fluctuation model at low drain current, with the effective oxide trap density extracted and discussed. At high drain current, however, the input-referred noise spectral density increases rapidly with the drain current, which indicates the significant impact of the ultranarrow source/drain extension regions of SNWTs. As a result, design optimizations to reduce the impact of parasitic resistance in SNWTs are necessary for analog/RF applications.

Published in:

IEEE Electron Device Letters  (Volume:30 ,  Issue: 1 )