By Topic

Multiscale Representation and Compression of 3-D Point Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sung-Bum Park ; Digital Media R&D Center, Samsung Electron. Co., Ltd., Suwon ; Sang-Uk Lee

A compact representation scheme is presented for 3-D point data. To describe underlying surface from raw point samples, we dyadically divide a 3-D domain enclosing whole points. Then, local points in each cube are approximated by a plane patch, yielding a multiscale representation of 3-D surface. To reduce the redundancy between different scale models, the geometry innovation is evaluated between different scale planes, which reveals the Euclidian distance between planes. Finally, the geometry innovation coefficients are compressed by a zerotree-based encoder. Based on the multiscale plane representation of 3-D geometry and the efficient plane decomposition method, the proposed scheme provides a desirable framework for 3-D point geometry processing.

Published in:

Multimedia, IEEE Transactions on  (Volume:11 ,  Issue: 1 )