By Topic

Linear and Branching System Metrics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
de Alfaro, L. ; Sch. of Eng., Univ. of California, Santa Cruz, CA ; Faella, M. ; Stoelinga, M.

We extend the classical system relations of trace inclusion, trace equivalence, simulation, and bisimulation to a quantitative setting in which propositions are interpreted not as boolean values, but as elements of arbitrary metric spaces. Trace inclusion and equivalence give rise to asymmetrical and symmetrical linear distances, while simulation and bisimulation give rise to asymmetrical and symmetrical branching distances. We study the relationships among these distances and we provide a full logical characterization of the distances in terms of quantitative versions of LTL and mu-calculus. We show that, while trace inclusion (respectively, equivalence) coincides with simulation (respectively, bisimulation) for deterministic boolean transition systems, linear and branching distances do not coincide for deterministic metric transition systems. Finally, we provide algorithms for computing the distances over finite systems, together with a matching lower complexity bound.

Published in:

Software Engineering, IEEE Transactions on  (Volume:35 ,  Issue: 2 )