Cart (Loading....) | Create Account
Close category search window

Opportunistic Optical Hyperchannel and Its Distributed QoS Assuring Access Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jing Chen ; Telecommun. Eng. Program, Univ. of Texas at Dallas, Richardson, TX, USA ; Jianping Wang ; Hui Yu ; Si-Qing Zheng

Light-trail is proposed as a candidate to carry IP traffic over wavelength-division multiplexing optical networks given its capability of enabling high-speed provisioning and accommodating multigranularity traffic. In a light-trail, the optical shutters at the start node and the end node are configured to be in OFF state and the optical shutters at the intermediate nodes are configured to be in ON state. Thus, an optical bus is formed, allowing traffic multiplexing without the state change of any optical shutter. This, however, limits the system throughput and also makes it impossible to implement a fully distributed medium access control (MAC) protocol to assure quality of service (QoS) in a light-trail. With the recent development on ultrafast optical shutter, we propose an improved light-trail architecture, called opportunistic hyperchannel in this paper. In an opportunistic hyperchannel, an intermediate node can dynamically control its optical shutter which makes it possible to design a fully distributed QoS assuring MAC protocol. We then present a QoS assuring distributed dynamic scheduling protocol, namely, minimum source round robin (minSrcRR) protocol, for opportunistic hyperchannels. Theoretical analysis on the effectiveness of the proposed QoS assuring protocol and the worst-case delay bound are also derived in this paper. The simulation results quantitatively demonstrate the advantage of opportunistic hyperchannels and the effectiveness of minSrcRR protocol.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:20 ,  Issue: 11 )

Date of Publication:

Nov. 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.