By Topic

Parallel Genomic Alignments on the Cell Broadband Engine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Abhinav Sarje ; Iowa State University, Ames ; Srinivas Aluru

Genomic alignments, as a means to uncover evolutionary relationships among organisms, are a fundamental tool in computational biology. There is considerable recent interest in using the Cell Broadband Engine, a heterogeneous multicore chip that provides high performance, for biological applications. However, work in genomic alignments so far has been limited to computing optimal alignment scores using quadratic space for the basic global/local alignment problem. In this paper, we present a comprehensive study of developing alignment algorithms on the Cell, exploiting its thread and data level parallelism features. First, we develop a parallel implementation on the Cell that computes optimal alignments and adopts Hirschberg's linear space technique. The former is essential, as merely computing optimal alignment scores is not useful, while the latter is needed to permit alignments of longer sequences. We then present Cell implementations of two advanced alignment techniques-spliced alignments and syntenic alignments. Spliced alignments are useful in aligning mRNA sequences with corresponding genomic sequences to uncover the gene structure. Syntenic alignments are used to discover conserved exons and other sequences between long genomic sequences from different organisms. We present experimental results for these three types of alignments on 16 Synergistic Processing Elements of the IBM QS20 dual-Cell blade system.

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:20 ,  Issue: 11 )