Cart (Loading....) | Create Account
Close category search window
 

Quartets MaxCut: A Divide and Conquer Quartets Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Snir, S. ; Inst. of Evolution, Univ. of Haifa, Haifa, Israel ; Rao, S.

Accurate phylogenetic reconstruction methods are currently limited to a maximum of few dozens of taxa. Supertree methods construct a large tree over a large set of taxa, from a set of small trees over overlapping subsets of the complete taxa set. Hence, in order to construct the tree of life over a million and a half different species, the use of a supertree method over the product of accurate methods, is inevitable. Perhaps the simplest version of this task that is still widely applicable, yet quite challenging, is quartet-based reconstruction. This problem lies at the root of many tree reconstruction methods and theoretical as well as experimental results have been reported. Nevertheless, dealing with false, conflicting quartet trees remains problematic. In this paper, we describe an algorithm for constructing a tree from a set of input quartet trees even with a significant fraction of errors. We show empirically that conflicts in the inputs are handled satisfactorily and that it significantly outperforms and outraces the Matrix Representation with Parsimony (MRP) methods that have previously been most successful in dealing with supertrees. Our algorithm is based on a divide and conquer algorithm where our divide step uses a semidefinite programming (SDP) formulation of MaxCut. We remark that this builds on previous work of ours [29] for piecing together trees from rooted triplet trees. The recursion for unrooted quartets, however, is more complicated in that even with completely consistent set of quartet trees the problem is NP-hard, as opposed to the problem for triples where there is a linear time algorithm. This complexity leads to several issues and some solutions of possible independent interest.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:7 ,  Issue: 4 )

Date of Publication:

Oct.-Dec. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.