By Topic

RF MEMS Actuated Reconfigurable Reflectarray Patch-Slot Element

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Harish Rajagopalan ; Dept. of Electr. Eng., Univ. of California, Los Angeles, CA ; Yahya Rahmat-Samii ; William A. Imbriale

This paper describes the design of a reconfigurable reflectarray element using commercially available radio frequency micro-electromechanical system (RF MEMS) switches. The element consists of a microstrip patch on the top surface and a slot with an actuated variable length in the ground plane. RF MEMS switches are mounted on the slot to electronically vary the slot length by actuating the switches and thus obtaining the desired phase response. Waveguide measurements and high frequency structure simulator (HFSS) simulations are used to characterize the reflectarray element. The four MEMS switches element gives 10 independent states with a phase swing of 150 deg and a loss variation from 0.4 dB to 1.5 dB at 2 GHz (more switches can provide larger phase shift). The loss is mainly attributed to the dielectric loss and the conductor loss, which occur due to the relatively strong electric fields in the substrate region below the patch and the large currents on the top surface of the patch, respectively, close to the patch resonance. Detailed analysis is performed to characterize the effect of the switches by taking into consideration the switch model and wire bonding effects.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:56 ,  Issue: 12 )