By Topic

Identifying Noncooperative Subjects at a Distance Using Face Images and Inferred Three-Dimensional Face Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Medioni, G. ; Viterbi Sch. of Eng., Univ. of Southern California, Los Angeles, CA ; Jongmoo Choi ; Cheng-Hao Kuo ; Fidaleo, D.

We present an approach to identify noncooperative individuals at a distance from a sequence of images, using 3-D face models. Most biometric features (such as fingerprints, hand shape, iris, or retinal scans) require cooperative subjects in close proximity to the biometric system. We process images acquired with an ultrahigh-resolution video camera, infer the location of the subjects' head, use this information to crop the region of interest, build a 3-D face model, and use this 3-D model to perform biometric identification. To build the 3-D model, we use an image sequence, as natural head and body motion provides enough viewpoint variation to perform stereomotion for 3-D face reconstruction. We have conducted experiments on a 2-D and 3-D databases collected in our laboratory. First, we found that metric 3-D face models can be used for recognition by using simple scaling method even though there is no exact scale in the 3-D reconstruction. Second, experiments using a commercial 3-D matching engine suggest the feasibility of the proposed approach for recognition against 3-D galleries at a distance (3, 6, and 9 m). Moreover, we show initial 3-D face modeling results on various factors including head motion, outdoor lighting conditions, and glasses. The evaluation results suggest that video data alone, at a distance of 3 to 9 meters, can provide a 3-D face shape that supports successful face recognition. The performance of 3-D-3-D recognition with the currently generated models does not quite match that of 2-D-2-D. We attribute this to the quality of the inferred models, and this suggests a clear path for future research.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:39 ,  Issue: 1 )