By Topic

Axial-Gap Type Permanent Magnet Motor Modeling for Transient Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sung Hong Won ; Dept. of Electr. Eng., Hanyang Univ., Seoul ; Jaehoon Choi ; Ju Lee

Researchers who study axial-gap type permanent magnet motors often have difficulties in analyzing the motor because the motor structure makes it difficult to define the two-dimensional (2D) finite-element model surfaces. Sometimes they try to define the surface as a cylindrical cutting surface with appropriate assumptions and sometimes they prefer three-dimensional (3D) finite-element simulations. However, the 2D analysis of the axial-gap type motor is restricted to a specified model and it is difficult to consider winding coil shape perfectly in most cases, and the 3D simulations take too long to achieve the desired results. This paper concerns the axial-gap type permanent magnet motor modeling method which can perform the transient simulation with one static 3D finite-element simulation and a winding coil mesh. This model can shorten the simulation time dramatically. To verify the feasibility, a 2phase/4phase vibration motor transient simulation was carried out and the results are well matched with the measured ones.

Published in:

Magnetics, IEEE Transactions on  (Volume:44 ,  Issue: 11 )