By Topic

Ferromagnetic Resonance Investigation of Macroscopic Arrays of Magnetic Nanoelements Fabricated Using Polysterene Nanosphere Lithographic Mask Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Mikhail Kostylev ; Sch. of Phys., Univ. of Western Australia, Crawley, WA ; Rhet Magaraggia ; Feodor Y. Ogrin ; Evgeny Sirotkin
more authors

A dense plane periodical array of cylindrical magnetic nanodots has been fabricated using a lithographic mask formed by self-organization of polystyrene nanospheres. In this paper, we study collective static and dynamic magnetic behavior of this array. We find that this technique produces samples with reasonably small dispersion of magnetic parameters of individual dots. This is evidenced by magnetometry and well-resolved discrete frequencies of standing spin waves measured with cavity and coplanar-waveguide ferromagnetic resonance. The standing spin wave resonances could be reliably observed in a large range of frequencies (4-15 GHz). However the measured linewidth of resonances is about ten times larger than for unpatterned Permalloy. This may be due to some variation in shape and magnetic parameters from dot to dot resulting in inhomogeneous broadening of the resonance lines.

Published in:

IEEE Transactions on Magnetics  (Volume:44 ,  Issue: 11 )