Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Sequential Optimization Method for the Design of Electromagnetic Device

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Gang Lei ; Coll. of Electr. & Electron. Eng., Huazhong Univ. of Sci. & Technol., Wuhan ; Shao, K.R. ; Youguang Guo ; Jianguo Zhu
more authors

Three sequential optimization methods, sequential least square method, sequential Kriging method, and sequential linear Bayesian method, are presented for the optimization design of electromagnetic device. Sequential optimization method (SOM) is composed of coarse optimization process and fine optimization process. The main purpose of the former is to reduce the design space; while the target of the latter is to update the optimal design parameters. To illustrate the performance of the proposed methods, an analytic test function and the TEAM Workshop Problem 22 are investigated. Experimental results of test function demonstrate that SOM can obtain satisfactory solutions; and practical application illustrates that the number of finite element sample points is less than 1/10 compared with that by direct optimization method, while the optimal results are even better than that by direct optimization method.

Published in:

Magnetics, IEEE Transactions on  (Volume:44 ,  Issue: 11 )