By Topic

Structural, Magnetic, and Microwave Properties of BaFe _{10.5} Mn _{1.5} O _{19} Thin Films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Anton L. Geiler ; Center for Microwave Magn. Mater. & Integrated Circuits (CM3IC), Northeastern Univ., Boston, MA ; Aria Yang ; Xu Zuo ; Soack Dae Yoon
more authors

Epitaxial manganese substituted M-type barium ferrite thin films are deposited by alternating target laser ablation deposition (ATLAD) of BaFe2O4, Fe2O3, and MnFe2O4 targets. The crystal structure and the epitaxy of the films are investigated by X-ray diffraction. Surface morphology is studied by atomic force microscopy. Magnetic properties of the films are characterized by vibrating sample magnetometry and magnetization as a function of temperature measurements. Ferromagnetic resonance (FMR) measurements are utilized to study the dynamic properties of the films. Possible mechanisms for main FMR linewidth broadening as a result of Mn substitution, such as increased conductivity and the presence of Jahn-Teller effect associated with octahedrally coordinated Mn3+ cations, are briefly discussed. Extended absorption X-ray fine structure measurements are performed to determine the cation distribution in the hexagonal unit cell. The observed 15-20% increase in saturation magnetization at 4 K and 50 K increase in the Neel temperature in comparison to bulk reference values are attributed to differences in cation distribution as a result of atomic scale deposition by the ATLAD technique.

Published in:

IEEE Transactions on Magnetics  (Volume:44 ,  Issue: 11 )