Cart (Loading....) | Create Account
Close category search window
 

Adaptive Neural Control for a Class of Uncertain Nonlinear Systems in Pure-Feedback Form With Hysteresis Input

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Beibei Ren ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore ; Ge, S.S. ; Chun-Yi Su ; Tong Heng Lee

In this paper, adaptive neural control is investigated for a class of unknown nonlinear systems in pure-feedback form with the generalized Prandtl-Ishlinskii hysteresis input. To deal with the nonaffine problem in face of the nonsmooth characteristics of hysteresis, the mean-value theorem is applied successively, first to the functions in the pure-feedback plant, and then to the hysteresis input function. Unknown uncertainties are compensated for using the function approximation capability of neural networks. The unknown virtual control directions are dealt with by Nussbaum functions. By utilizing Lyapunov synthesis, the closed-loop control system is proved to be semiglobally uniformly ultimately bounded, and the tracking error converges to a small neighborhood of zero. Simulation results are provided to illustrate the performance of the proposed approach.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:39 ,  Issue: 2 )

Date of Publication:

April 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.