By Topic

Vertical Mirror Fabrication Combining KOH Etch and DRIE of (110) Silicon

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lee, S. ; Devices & Mater. Lab., LG Electron. Inst. of Technol., Seoul ; Kyoungsik Yu ; Krishnamoorthy, U. ; Solgaard, O.

This paper presents fabrication of MEMS-actuated optical-quality vertical mirrors as the key active optical components in a silicon optical bench (SOB) technology. The fabrication process is based on a combination of potassium hydroxide (KOH) etch and deep reactive ion etching (DRIE) of (110) SOI wafers. The process starts by creating optical-quality vertical surfaces by KOH etch, followed by an oxidation step to protect them. The patterned wafer is then etched by DRIE to define actuators. The process is designed to allow the KOH etch and DRIE to be independently optimized without compromising either while at the same time meeting the challenge of lithography on high-aspect-ratio structures. Three variations of the fabrication process are demonstrated, two that use double masking layers and one that uses a silicon masking layer. We demonstrate in-plane scanners and fast translational vertical mirrors fabricated using these processes. In addition, we propose extensions of the fabrication process to account for DRIE aspect-ratio limitations. Mask layouts of key SOB building blocks, including vertical mirrors, beam splitters, and parallel-plate actuators, are also presented. [2008-0146]

Published in:

Microelectromechanical Systems, Journal of  (Volume:18 ,  Issue: 1 )