By Topic

Exploratory Undersampling for Class-Imbalance Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xu-Ying Liu ; Nat. Key Lab. for Novel Software Technol., Nanjing Univ., Nanjing ; Jianxin Wu ; Zhi-Hua Zhou

Undersampling is a popular method in dealing with class-imbalance problems, which uses only a subset of the majority class and thus is very efficient. The main deficiency is that many majority class examples are ignored. We propose two algorithms to overcome this deficiency. EasyEnsemble samples several subsets from the majority class, trains a learner using each of them, and combines the outputs of those learners. BalanceCascade trains the learners sequentially, where in each step, the majority class examples that are correctly classified by the current trained learners are removed from further consideration. Experimental results show that both methods have higher Area Under the ROC Curve, F-measure, and G-mean values than many existing class-imbalance learning methods. Moreover, they have approximately the same training time as that of undersampling when the same number of weak classifiers is used, which is significantly faster than other methods.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:39 ,  Issue: 2 )